| 雷峰网
0
雷锋网 AI 科技评论按:DeepMind的联合创始人 Mustafa Suleyman 近日在金融时报(Financial Times)上发表了一篇署名文章「Harnessing technology to challenge inequality」(用科技进步消除不平等),讲解了他对现代科学技术的风险与作用的见解。
除了文章本身,金融时报还提供了一个真人阅读的有声版本,所以我们也把英文原文附在译文后,欢迎感兴趣的英文读者温习温习英文听力(笑)。
语音地址:链接 https://pan.baidu.com/s/1o7XrD38 密码 yy4n
人类社会有一些最紧迫又持久的问题,从气候变化到不平等,还有许多别的。如果想要解决它们,科学技术就会在其中起到领导性的作用。人工智能促进下的科学突破可以带来巨大的变化,它们可以在与人类最息息相关的领域帮助人类发现新的知识、新的想法和新的策略。
但是大众对于科技工业中某些元素的越来越多的担心已经为我们敲响了警钟。科学技术太重要了,它们的影响范围也太大了,这都已经是公众的共识。新出现的一个个问题背后的实质,是科学技术的世界和真实世界之间已经出现了至少三个不平衡的方面。
首先,开发科学技术的人和使用这些科学技术的人之间是割裂的。硅谷的薪水是美国其它地区薪水中位数的两倍,而且硅谷员工的组成在性别、种族、社会阶级等等方面也不能代表全美的状况。科学技术并不是价值中立的,而且如果我们想尽量减少技术造成的意外伤害的话,各种各样的人群都需要参与到技术的构建和调整中来。
这是一个非常紧急的问题。女性和少数群体的诉求到现在都没有得到足够的关注,领袖们应当主动打破这样的局面。
第二点,科学技术真正的工作原理方面有巨大的信息不对称。解决这个问题一定要各个角色的人共同合作,并且需要新类型的团体帮助人们深入理解复杂算法是如何运转的、这些算法对社会的影响又是什么。达到这个目标需要勇气、信任,以及超越每个人习以为常的社会角色之外的真正的讨论和参与;而往往这种时候激进主义者、政府和技术主义者会互相批评指责而不是通力协作。
它还需要让数据的使用过程变得更加透明。许多企业、学术结构和非营利性组织都已经开始做出努力,尝试开发出一些方法让算法产生的影响变得更好理解。MIT的研究人员Joy Buolamwini 和算法正义联盟(Algorithmic Justice League)就已经举办了一次展览,让人们更多地了解到面部识别系统遇到肤色较深的人的时候经常会产生令人不快的结果。
第三点,而且这一点并不仅仅发生在科学技术身上,就是激励结构的不平衡。
衡量商业成就有一些标准的指标,从融资规模到活跃用户数等不一而足,但所有这些指标都并没有涵盖企业在尝试改变世界的同时背负的社会责任。
这种割裂的状况产生得很早。科技领域可能有很多的资金,但是大多数的企业家还是会失败。每个希望让新的企业快速成长的创业者都需要想办法说服投资人和自己的员工,让他们相信企业未来会成长得多么大,然后不折不挠地向那个方向进发。达到这样的目标需要一心一意地关注那些仿佛比较重要的数值,同时也就没给考虑复杂的外在社会属性或者聆听反对者的声音留下什么空间。
为什么很多全世界最聪明的人都被最安全、最经过完善验证的想法和商业模式吸引,这就可以算是其中的一部分原因。而这种状况的结果就是他们推出了新的服务,给消费者提供个性化的软饮料,但同时世界上还有5亿的人喝不到干净的水;又或者他们想出了新的用手机点单的方法,而同时还有8亿人营养不良。人类社会需要新的激励结构,鼓励更多的创业者解决真实世界中的问题,心里也要怀着对道德伦理的尊重。
这几件事没有一件好做。但是更公平的世界也不会突然就自己出现。想得到符合伦理道德的结果,需要的远不止是算法和数据,社会讨论和责任的水平高低也有重要的影响。而事后能得到的奖赏是巨大的。如果人类能够共同引导这些问题走向正确的方向,相信我们肯定可以在未来的几十年内看到不可思议的科学进步与社会进步。社会中每一个相信科学技术力量的人都应该尽自己所能,保证这些人造的系统能够体现出人类集体自我的最高价值。
If we want to address society's most pressing and persistent challenges, from climate change to inequality, then technology will have a leading role to play. Scientific breakthroughs facilitated by artificial intelligence could make the crucial difference, by helping to discover new knowledge, ideas and strategies in the areas that matter most to us all.
But increasing public concern about some elements of the technology industry should serve as a wake-up call. Tech is too important, and its effects are too wide-ranging, not to form part of the public debate. Beneath the individual issues raised, there are at least three asymmetries between the world of tech and the real world.
First, the disconnect between people who develop technologies and the communities who use them. Salaries in Silicon Valley are twice the median wage for the rest of the US and the employee base is unrepresentative when it comes to gender, race, class and more. Technology isn't value neutral, and it needs to be built and shaped by diverse communities if we are to minimise the risk of unintended harms.
This is an urgent problem. Women and minority groups remain badly under-represented, and leaders need to be proactive in breaking the mould.
Second, there's an asymmetry of information regarding how technology actually works. Solving this has to be a collaborative effort, and requires new types of organisations that facilitate deep understanding of how complex algorithms operate and their impact on society. This takes courage, trust and the prioritisation of real debate and engagement over the comfort of our institutional roles, in which activists, governments and technologists are often more likely to criticise each other than to work together.
It also requires more visibility into how data are used. There are efforts under way within companies, alongside academics and non-profit organisations who are developing ways to make the impacts of algorithms easier to understand.
MIT researcher Joy Buolamwini and the Algorithmic Justice League have created museum exhibits to increase awareness of the disturbing ways facial recognition technologies often fail for individuals with darker skin tones.
Third — and this is by no means unique to tech — there is a structural imbalance of incentives.
The standard measures of business achievement, from fundraising valuations to active users, do not capture the social responsibility that comes with trying to change the world.
This disconnect starts early. There might be a lot of money in tech, but the vast majority of entrepreneurs still fail. Any founder hoping to get a new business off the ground has to convince investors and staff of future growth, and then deliver that relentlessly. Doing this takes single-minded focus on the metrics that appear to matter, with little room to consider complex societal externalities or listen to naysayers.
That's partly why some of the world's brightest minds gravitate towards the safest and most proven ideas and business models. They end up creating new services to personalise soda drinks when half a billion people don't have access to clean water, or new ways to order food by phone when more than 800m people are malnourished. We need new incentive structures to encourage more founders to take on real-world problems, and to do so with ethics at their heart.
None of this is easy. But a fairer world won't emerge by accident. Positive ethical outcomes depend on far more than algorithms and data: they depend on the quality of societal debate and accountability, too. The prize is enormous. If we get this right collectively, we can look forward to incredible scientific and social progress over the next few decades. All of us who believe in the power of technology must do everything we can to ensure these systems reflect humanity's highest collective selves.
(完)
雷锋网 AI 科技评论编译。
相关文章:
100:0!Deepmind Nature论文揭示最强AlphaGo Zero,无需人类知识
你可能还不知道,WaveNet 为了进驻 Google Assistant 做出了这些重大变化
雷峰网版权文章,未经授权禁止转载。详情见转载须知。