您正在使用IE低版浏览器,为了您的雷峰网账号安全和更好的产品体验,强烈建议使用更快更安全的浏览器
此为临时链接,仅用于文章预览,将在时失效
业界 正文
发私信给嫣然
发送

0

拥抱你的AI新同事,虽然最后你可能被抛弃——欢迎来到AI协同工作纪元

本文作者: 嫣然 2017-11-22 22:02
导语:我们并不是生活在AI的黄金年代,而是生活在AI提高生产力的黄金年代。

雷锋网按:我们已经站在人工智能时代的前沿。大部分人对此趋之若鹜,少数人高喊着警惕的口号,被视为杞人忧天的傻子。人工智能的浪潮正不可避免的袭来,它到底是怪兽还是福音?

恐怕事实上,它两者都是。日前Wired发布文章,深刻的揭露了人工智能从提高人类生产力到淘汰人类生产力的过程,可以说是一篇警世恒言。雷锋网在不改变原意的情况下为您做如下编译:

拥抱你的AI新同事,虽然最后你可能被抛弃——欢迎来到AI协同工作纪元

去年秋天,谷歌翻译推出了一个崭新的、改进过的人工智能翻译引擎,声称它与人工翻译有时“几乎难以区分”。 Jost Zetzsche对此只能翻白眼。 这位德国人已经在翻译领域工作了20年,他一次又一次地听说他的行业将受到自动化进步的威胁。 每一次他都发现是夸大其词的炒作,Google翻译也不例外。他认为,这当然不是翻译的关键。 

但是这次的结果出乎意料的好。谷歌在2016年花费了更多的时间改造其翻译工具,以人工智能为动力,并且通过这种方法,它创造了一些无比强大的东西。谷歌翻译一度以出产呆板但是尚说得过去的翻译而闻名,现在开始生产流畅而高度精确的散文。对于未经训练的人来看,它的这种输出与人类翻译几乎没有区别。一个1.5万字的纽约时报的故事称之为“AI的伟大觉醒”。引擎很快开始学习新的技巧,弄清楚如何翻译它以前没有遇到的语言:一旦它处理过英语对日语以及英语对韩语的翻译,它就可以弄清楚怎么处理韩语对日语的翻译。在上个月的Pixel 2发布会上,谷歌引入了它所承诺的无线耳机,可以实时翻译40种语言,将它雄心勃勃的议程进一步推向了前进的轨道,

自从IBM于1954年首次推出机器翻译系统以来,完美机器翻译的理念就抓住了程序员和公众的想象力。科幻小说家们抓住了这个想法,创造了大量这样的乌托邦幻想,从《星际迷航》的“宇宙通用译者(Universal Translator)”到《银河系漫游指南》中的巴比鱼。人工翻译的水准——翻译流利的散文并能够捕捉源文本中包含的人文意义,这是机器学习的圣杯:如果被实现,就意味着机器已经达到人的智能水平。谷歌在神经机器翻译领域的进步意味着圣杯在触手可及之处——随之而来的是人工劳动的过时。 

由于翻译长期以来一直处于人工智能引发工作恐慌的第一线,因此人们并不很担心。有些人甚至很高兴。 对那些抓住人工智能工具潜力的人来说,生产力随着工作的需求而急剧上升。

把他们想象成穿着白领在煤矿里挖煤的金丝雀吧。目前,他们还在唱歌。 随着深度学习的萌芽,许多行业正在认识到,人工智能确实能够完成曾经被认为是专属于人类的任务。与司机和仓库员工不同,知识型员工不会立即面临流离失所的危险。但是,随着人工智能成为他们工作流程的重要组成部分,他们的工作正在发生变化,而且不能保证今天有用的人工智能工具不会成为未来的威胁。 这给人们提供了一个选择:放下自我,拥抱你的新AI同事,或被抛弃。 

拥抱你的AI新同事,虽然最后你可能被抛弃——欢迎来到AI协同工作纪元

我们并不是生活在AI的黄金年代,而是生活在AI提高生产力的黄金年代。姑且称它为第一阶段。人工智能现在已经足够强大,能够对无数复杂的任务进行可靠的第一次尝试,但它还没有强大到看起来能造成威胁的地步。对于需要密集思考的主观性工作,我们仍然需要人类。

各行各业都在进行劳动力转移。 “华盛顿邮报”的内部人工智能,赫利奥格拉夫,去年发表了850多篇文章,人类记者和编辑为其加入了一些分析和丰富的细节。在图形设计中,人工智能工具现在可以生成设计初稿,最后执行交给人类设计师。在电影和出版方面,新的工具有望在海量良莠不齐的稿堆中找到下一个大热项目,使编辑从无休止的提交队列中解脱出来。这些人工智能工具就像年轻的助手一样,他们很有能力并且多产,但仍然需要一个经验丰富的经理来完成智能型重任。当然,这位经理要与机器一起工作才能获得好处。

在位于亚利桑那州的公司律师事务所Fennemore Craig,律师们跳上人工智能列车,试用了一家名为ROSS Intelligence的创业公司的新技术。ROSS使用IBM Watson和专有算法的组合,以AI驱动,是LexisNexis(律商联讯数据库)等工具的继任者:它纵览梳理数百万页的判例法,并在备忘录中以草稿形式记录其发现。这个过程聘请律师可能需要4天的时间才能完成,ROSS只需要大约24小时。 ROSS不会因疲劳或倦怠而受到影响:可以日以继夜的连续工作,不会因之感到痛苦。

ROSS的写作能力虽然也还可以,但并不是其突出的特点。据Fennemore Craig的三年级学生布莱克·阿特金森(Blake Atkinson)的说法,其写作水平大约为一年级法律学生的水平。(该公司的合伙人安东尼·奥斯丁更为慷慨:他认为, ROSS与一些第一年或第二年的同事一样好)。该工具生成干净的备忘录,虽然没法和海明威(世界级著名作家)的水平比,但它提供了一个功能性初稿,写满了适用的判例法摘要,一些基本的分析和一个简明扼要的结论。然后,由一个人类的律师进行更深入的分析和语言组织,让文本可以让人愉快地阅读——至少是一个律师可以愉快的阅读。奥斯汀说:“这可以让我们做有趣而富有成果的事情。 “老天,我不关心1885年的蒸汽机,我真正想做的事情是写点有趣而吸引人的东东西,法官和对方律师一听就知道他,‘我完了’。”

最终,像ROSS这样的工具几乎肯定会减少在探索过程中对人类律师的需求。目前尚不清楚这将如何改变雇用初级律师的情况,因为他们的工作常常是在在旧的判例法上埋头苦干。但是深入的分析和重要的写作仍然远远超出了ROSS的能力范围。对于创业公司来说,成功的关键在于,律师们不会害怕ROSS——毕竟,谁想来培训他们的替代品呢?这就是为什么首席执行官安德鲁·阿鲁达(Andrew Arruda)认为ROSS是一个生产力工具,而不是一个AI律师。它让律师能够为更多的客户服务,专注于他们工作中有趣的部分。奥斯汀更简洁地说:在ROSS的帮助下,他说:“你就像一个摇滚明星一样酷。” 

对于许多翻译人员来说,人工智能助长了超人的生产力并不是什么新鲜事。当Alessandro Cattelan在2003年开始他的翻译生涯时,他每天翻译大约2000字能挣大约175美元。他使用计算机辅助翻译工具,偶尔基于他以前翻译过的短语提供建议——但翻译是一个非常手动的过程。今天,与人工智能协同工作,现在翻译人员可以在一天内要获得相当数量的金钱(调整通货膨胀率)需要翻译八千到一万字,Cattelan说。这个过程被称为机器翻译后编辑(PEMT),首先让机器先翻译一遍,然后引入翻译人员来整理语言,检查不正确的解释术语,并确保语调,上下文,翻译的文化暗示,这些都是重点。

Cattelan是Translated公司的运营副总裁,该公司发展基于AI的翻译工具。他说:“你必须弄清楚你的工作中的哪些部分可以被机器所替代,以及你作为一个人能够带来什么价值。”。由于Translated在4月份开始向其编辑翻译人员提供神经网络机器翻译,它的生产力显着提高,特别是德语和俄语等语言,过去由于其复杂的语法总需要额外的调整。 

PEMT并不新鲜——至少在20世纪80年代以来,这一领域一直在不断发展。但随着神经网络机器翻译的出现,它正在被广泛采用。根据市场研究公司Common Sense Advisory的数据,未来几年,后期编辑的需求预计将比其他语言行业的增长速度更快,企业翻译在接下来的几年里可能会实现两位数的增长。Common Sense Advisory警告说,“即使语言行业以史无前例的速度增加新的翻译人员,目前的方法也不可能跟上这种增长水平”。有人认为,与机器翻译协同工作已经成为必须:根据机器翻译平台Lilt首席执行官Spence Green说,“机器翻译”现在是一个需求,而对于资历较老的翻译人员,他们甚至不需要使用翻译记忆软件。”

总部位于悉尼的翻译公司夏洛特·布拉斯勒(Charlotte Brasler)表示,在过去的一年里,机器翻译工具变得非常好用,如果不是使用这些工具会破坏保密协议(这是一个常见的障碍),她会欢迎这些工具。与能力很强的AI一起工作让她能够承担更多的项目,并腾出时间处理多有创造性的文本,而这些文件机器通常无法翻译出来。

但是,这一点也在发生变化:Brasler说,在过去的一年里,由于神经网络的加入,谷歌翻译在处理销售和营销材料方面表现出色,对这些材料的翻译涉及丰富多彩的语言和习语。当然,引擎并不是诗人,但是在人们长久以来认为机器不可能征服的领域,它正在迅速改善。对于那些用艺术来定义自己的劳动者来说,这是很难接受的。 

技术的飞跃总是超出我们的承受范围。有人无法忍受与机器合作的想法,有人宁愿埋头于概念性学术期刊,假装没有任何变化发生。对于这些人来说,人工智能突飞猛进的增长是一场生存危机。当然,电脑可以筛选数据,甚至可以拼凑一个基本的句子——但它能写散文能让你流泪吗?它能分析一个成语的细微差别,或者发现下一个畅销小说家,或者说服最高法院的司法系统、改变他们的想法吗?

还没有,但机器可以帮助你到达那里。一些最具创意的行业开始尝试人工智能,他们遇到了一些挫折。今年四月,当“黑名单”(一个连接剧作人与制片方的网络)宣布将与一家名为ScriptBook的人工智能公司合作评估剧本,作家们群起抵抗。 Billions的执行制片人Brian Koppelman称这种工具“很冒犯人,粗暴武断”。黑名单迅速取消了与ScriptBook的合作关系,原本ScriptBook负责扫描角色分析,人口统计和票房成功的等脚本。虽然ScriptBook这家初创公司已经与两家主要的电影制片厂成功合作,但它的首席执行官Nadira Azermai表示,大多数电影制作人还没有能够克服对这个工具的恐惧。

“几年前,人们认为谈到创意时人类是安全的,因为人工智能不能像人类一样具有创造性,或者不如人类那么特别。但这不是真的,“阿塞迈说。当业内人士指责她创造一个工具来窃取工作时,她告诉他们,他们的工作确实受到威胁,但不是AI。相反,她对反对者说:“你的工作会输给那些知道如何与机器合作的人。如果你坚决的把头转向另一个方向,假装它不存在,你将会失去工作。” 

一个类似的工具是StoryFit,其产品包括票房预测评分,剧本结构和风格分析以及故事情感组成阅读。正如TJ Barrack所解释的那样,他的工作室Adaptive Studios决不会仅仅因为在StoryFit报告中看到的东西而通过一个脚本——但是他的团队可能会考虑如何根据它了解到的东西来演变脚本。 Barrack说:“如果这显示我们可能因为某些东西在市场上出现问题,那么我们是否有办法可以改善这个故事? “我们或许可以调整一些情节点?我们可以在这里或那里添加更多的情感?”

人们刚刚开始摆脱人工智能的炒作,开始专注于AI驱动工具如何帮助他们的工作。 StoryFit首席执行官莫妮卡·兰德斯(Monica Landers)表示,她最近开始对自己公司的产品感到担忧。但她仍然要谨慎行事。当我问她公司的下一步行动时,她犹豫不决地回答:“如果我们谈论得太超前,还是会让人紧张。”她说。

毋庸置疑的是:如果我们放弃作为人的特质也就是创造力和直觉,我们就要先彻底重新思考人的意义是什么。这两种技能都暗示着某种不可知的想象力或第六感。但事实上,机器已经非常具有创造性,产生了令人惊讶的创新艺术作品:他们正在拍照,写音乐,创造超现实主义的艺术作品。因为他们开始与人类的经验深深共鸣,我们才需要担心。

拥抱你的AI新同事,虽然最后你可能被抛弃——欢迎来到AI协同工作纪元

华盛顿大学计算机科学教授,《The Master Algorithm》一书的作者佩德罗·多明戈斯(Pedro Domingos)说:“机器可以富有创造性,而且它们确实富有创造性。与此同时,直觉是一个更为棘手的问题:它需要更深入地了解人们如何思考以及世界如何运作。 Tech的最佳工程师们还没有想出如何用直觉装备AI;只要这种情况仍然存在,人类将在工作中继续占上风。律师需要了解她的目标读者以及他们可能拥有的所有偏见或倾向;译者需要对他所翻译的两种文化有一个细致入微的理解。多明戈斯说:“一旦这些任务中映射到现实世界,就是机器落后的地方,人们确实有优势——至少在可预见的将来。” 

与我们的AI同事合作,使工作看起来变成了可疑的乌托邦。机器接管了那些吃力不讨好的工作,它们一直太过复杂难以自动化,直到最近。人类可以沉浸在工作中最有创意和价值的方面。但是,这是我们之前看到的一种模式——一种可能最终破灭的热潮。
当自动取款机在20世纪60年代后期首次推出时,很多人都惊讶地看到美国的银行出纳员人数增加了一倍,并保持了数十年的增长。为了摆脱现金的沉重任务,出纳员可以把注意力转向帮助客户解决账户问题或发放出纳员支票;结果,他们变得更有生产力。但是,经过这样的增长之后,银行出纳员的数量现在正在下降,这要归功于贝宝,智能手机银行等技术的累积效应,以及现金需求的下降。一段时间之后,技术终于从福音走向了“怪物”。对麻省理工学院“数字经济倡议”的联合主管安德鲁·迈克菲来说,银行出纳员的传奇故事是一个警醒寓言。他说:“技术可能在一段时间内增加了工作,创造了就业机会,那那并不意味着它将一直这样做。”“我们以前看过这种情况。”
但是目前,翻译人员,律师,医生,记者和文学代理人的工作是安全的。有人甚至会说他们的工作比以往任何时候都好。但我们现在发现自己处于一个奇怪的位置。我们不得不承认,人工智能正在迅速掌握我们以往视为机器禁区的任务。我们必须认识到,拥抱AI正在迅速成为在许多领域取得成功的先决条件。我们必须欢迎这些新的AI同事,在他们犯错的时候纠正他们——并且心里知道在某个时候,等我们教的足够多了,他们会一步步往上爬。

雷锋网编译 via Wired

雷峰网原创文章,未经授权禁止转载。详情见转载须知

分享:

编辑

专注区块链与币圈。微信号:742603835
当月热门文章
最新文章
请填写申请人资料
姓名
电话
邮箱
微信号
作品链接
个人简介
为了您的账户安全,请验证邮箱
您的邮箱还未验证,完成可获20积分哟!
请验证您的邮箱
立即验证
完善账号信息
您的账号已经绑定,现在您可以设置密码以方便用邮箱登录
立即设置 以后再说
Baidu
map