资讯 人工智能学术
此为临时链接,仅用于文章预览,将在时失效

姚班天才少年鬲融凭非凸优化研究成果获得斯隆研究奖

作者:杨晓凡 编辑:汪思颖
2019/03/10 19:27

姚班天才少年鬲融凭非凸优化研究成果获得斯隆研究奖

雷锋网 AI 科技评论按:近日,美国艾尔弗·斯隆基金会(The Alfred P. Sloan Foundation)公布了2019年斯隆研究奖(Sloan Research Fellowships)获奖名单,华裔学者鬲融获此殊荣。

鬲融 2004 年从河北省保送至清华大学计算机系,是首届清华姚班毕业生,普林斯顿大学计算机科学系博士,曾在微软研究院新英格兰分部做博士后,2015年至今在杜克大学担任助理教授。

斯隆研究奖自1955年设立,每年颁发一次,旨在向物理学、化学和数学领域的这些“早期职业科学家和学者提供支持和认可”,后来陆续增加了神经科学、经济学、计算机科学、以及计算和进化分子生物学。2019届斯隆研究奖获奖者共126名,其中,含鬲融在内共有19位华人学者获奖。

斯隆研究奖历来有“诺奖风向标”的美誉。因为迄今为止,已有47位该奖项获奖人获得了“诺贝尔奖”。另有17位获奖人获得了“数学菲尔兹奖”,69位获奖人获得“美国国家科学奖章”,18位获得“约翰·贝茨·克拉克奖”。

鬲融求学期间有许多突出事迹,可谓是天才少年,在这篇文章中有较为详细的叙述,以及这之后在读博期间获得了 NIPS 2016 的最佳学生论文奖。下面我们着重介绍一下他近期的研究成果。

鬲融的研究领域为理论计算机科学和机器学习。他在个人主页上写道“深度学习等现代机器学习算法尝试从数据中自动学习有用的隐含表示。那么我们要如何公式化数据中的隐含结构,以及如何设计高效的算法找到它们呢?我的研究就以非凸优化和张量分解为工具,通过研究文本、图像和其他形式的数据分析中出现的问题,尝试解答这些疑问。”

鬲融的研究有三个主要课题:表示学习(Representation Learning)、非凸优化(Non-convex Optimization)以及张量分解(Tensor Decompositions)。此次获得斯隆研究奖,正是基于鬲融在非凸优化方面的研究。根据他本人介绍:“现在机器学习大多使用深度学习算法,这些算法需要通过解决一些非凸优化问题来找到最优的神经网络参数。理论上非凸优化在最坏情况下是非常困难的,但是实际上即使是非常简单的算法(比如梯度下降gradient descent)都表现很好。我最近的工作对于一些简单的非凸优化问题给出了一些分析,可以证明所有的局部最优解都是全局最优解。”

他还补充道:“科研中感觉有些问题一开始看来完全没有头绪,但是有几个特别感兴趣的问题我一般会每隔一段时间再看一下。现在理论机器学习方向发展很快,往往过了一段时间就有很多新的技术可以尝试。其实一开始研究非凸优化的问题是为了解决张量分解的问题(这个是我之前做的研究),但是开始做了之后才发现我们用的工具在很多其他问题中也非常有效。”

不仅此次获奖的研究结论“简单的非凸优化中所有的局部最优解都是全局最优解”对机器学习领域的研究人员们来说是一个令人欣慰的结论,鬲融更多关于别的课题的研究论文也发表在了NIPS、ICML、ICLR等顶级人工智能学术会议上。雷锋网 AI 科技评论下面列举一些。

他的个人主页见 https://users.cs.duke.edu/~rongge/

雷锋网 AI 科技评论报道。

长按图片保存图片,分享给好友或朋友圈

姚班天才少年鬲融凭非凸优化研究成果获得斯隆研究奖

扫码查看文章

正在生成分享图...

取消
相关文章
Baidu
map